Tremco Incorporated Vegetated Roof & Rainwater Harvest System

Tremco North Building Renovation

- Vegetated roof and rainwater harvesting as part of a total renovation of the entire building
 - Built in 1969
 - High operating costs
 - Need for an active demonstration of the RPM 'Building Solutions Group' family of products
 - Desire to have a LEED certified building

Green on Green Retrofit

RPM BUILDING

RPM

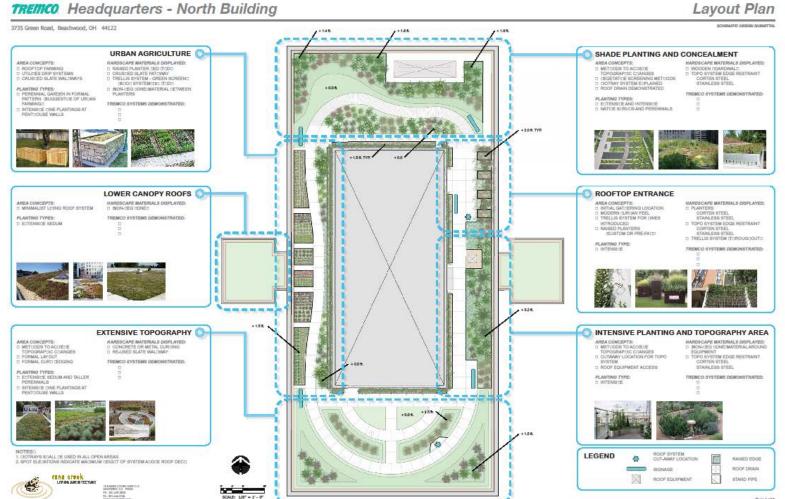
TREMCO. ROOFING & BUILDING MAINTENANCE

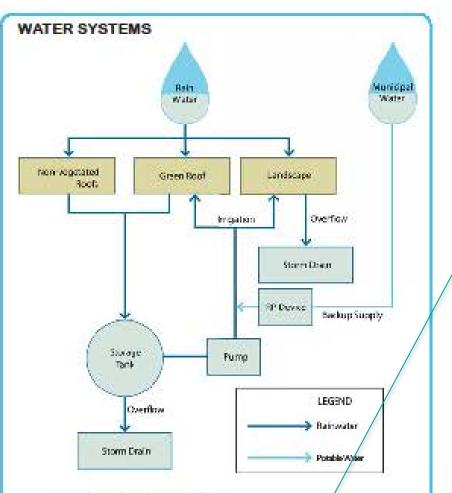
Barrier Solutions

EUCLID CHEMICAL

• Retrofit Highlights:

- Vegetated roof
 - Approximately 9,000 sq ft
 - Engineered growing medium absorbs most of the water
 - Stormwater reuse for irrigating plants keeps it out of sewer system
 - Insulating quality helps moderate building temperature
 - 46 species of plants / 16,000 plants





Vegetated Roof Concept

Stormwater Reuse System Summary

Stormwater runoff from the vegetated and non-vegetated portions od the Tremco Headquarters roof is collected in a ground-level storage tank. The storage tank capacity is designed to retain 75% of a 20 year design storm event and provide 100% of the annual irrigation demand. A potable back-up supply will ensure that the landscape receives adequate water when the tank's supply is depleted.

Stormwater Reuse System Summary Normwater much from the vegetated and non-vegetated particles of the Twinco Headquarters need is collected in a groundlevel storage task. The storage task capacity is designed to retain $\#R_0$ of a A^{2} -year design storm event, and provide A^{2} is or the anual implicitor demand. A polable back-up supply will occur in the burdwape receives adequare works when the task's apply is depicted.

Plants, Irrigation & Stormwater Capture

Which Decision Came First

How Much Water

Plant Palette

- Urban Agriculture
- Native meadow
- Sedum groundcover areas
- Native shade concealment area
- Over 200' linear ft of living walls

Where and How to Capture

- Parking lot surface!
- Available area for cisterns
- Available area for pumps, vault for initial capture and other equipment

Plant Palette Water Needs

- Typical Transpiration Ratios
 - Water processed for sufficient CO₂ uptake for photosynthesis
 - C3, C4 and CAM
 - ET Rate calculation
 - Irrigated area (sf) X ET Rate (inches) x 0.6233 = Water in gallons
- The Challenge of Life on a Roof
 - Shallow growing media
 - Aggregates to aid in drainage
 - Store water AND heat
- Irrigation Challenges
 - Sub-surface drip

Water Capture Design

- Asphalt pavement
 - 50,000 sf; 1" rain per hr. = 31,000 gph
 - Petroleum, salt and particulate issues
- 15,000 gal storage Vault in parking lot
 - 15 hp, 500 gpm pump
 - High and low level controllers tied to automated building management system
- Captured water moves to 6 cisterns
 - Rosedale particulate filter/strainer holds back particulates from cisterns
- 6 2,000 gal cisterns store water for use on the roof utilize gravity to move water from one to the other

Irrigation

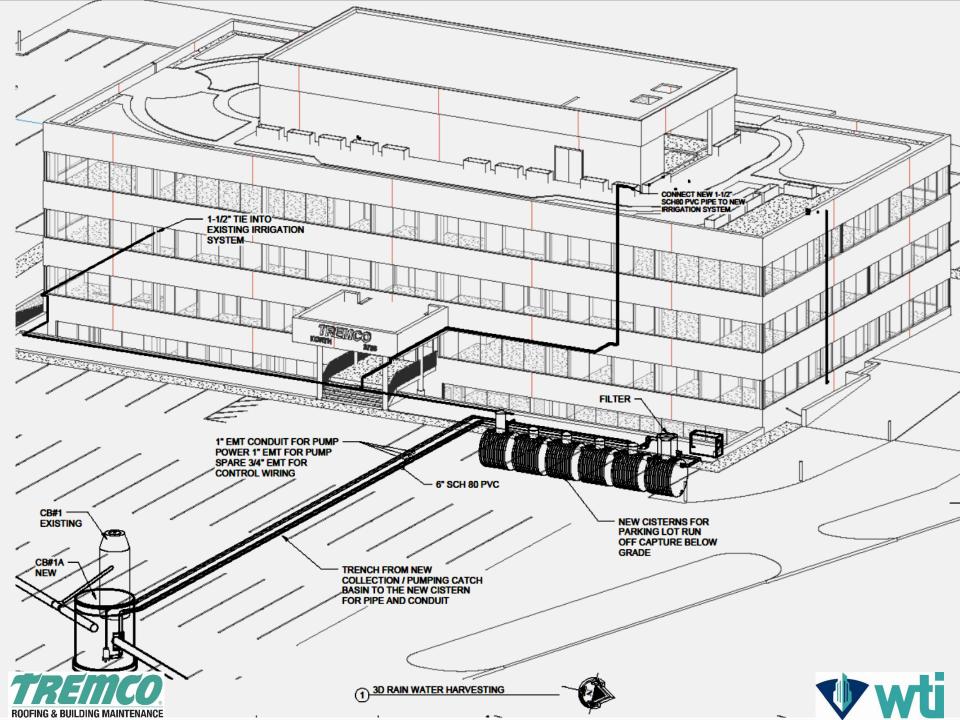
- Cistern water moves to the roof via pump
 - 1.5 hp; 20 gpm; 60' head
- Hunter Controllers
 - 9 zones
 - Multi zone run times
 - Avoids cycling pump on and off
 - Solar synch
- KISSS Lo Flo Subsurface irrigation system
 - 0.5 gpm emitters
 - Capillary mat helps move water into surrounding soil
- Water runs through 2 Pentek OAD 20BB filters
- All tied into the automated building management system

Captured stormwater moves from the parking lot storage vault through this particulate strainer/filter and into the cisterns.

Double Cartridge Filtration

Stormwater is pumped to the roof from the cisterns and flows through two Pentek OAC-20BB cartridges.

- Oil adsorbing cartridges
- Filters out 90% of total hydrocarbons
- Modified cellulosebased filter media
- 20" long
- High flow rate/low pressure drop

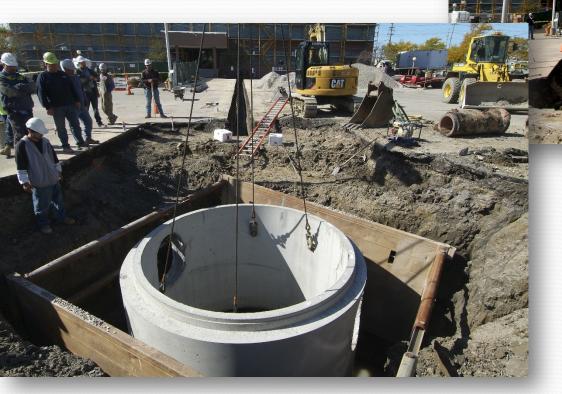


Used Oil Adsorbing Cartridge... typically replaced once a month during the summer.

Constant Monitoring

There is an ongoing effort to monitor the amount of available water in the cisterns. While alarms will sound if the water level is less than 10% of needed capacity, monitoring helps to alert the manager to the potential need for potable water.

	Inches	1=28 gallons	Cell DX6		
		Gallons Per			
Day	Depth	Cistern	Total Gallons	Days of Rain	Solar Sych %
Week of 6/4					
Monday					
Wednesday	62	1736	10416	1	53% (R) 51% (G)
Friday	53	1484	8904	0	62% ® 70% (G)
Week of 6/11					
Monday	42	1176	7056	0	90%(R) 85%(G)
Wednesday	36 3/4	1029	6174	1	73% ® 75% (G)
Friday	16	448	2688	0	81%(R) 83%(G)
Week of 6/18					
Monday	67	1876	11256	1	73%(R) 66%(G)
Wednesday	62	1736	10416	0	58%(R) 61%(G)
Friday	58 1/2	1638	9828	1	88%(R) 81%(G)
Week of 6/25					
Monday	41	1148	6888	0	78%(R)73%(G)
Wednesday	39	1092	6552		65%(R)70%(G)
Friday	37	1036	6216		91%(R)81%(G)
					() ()
Week of 7/2					
Monday	38.75	1085	6510	1	78%(R)76%(G)
Wednesday	65	1820	10920	2	76%(R)76%(G)
Friday	61	1708	10248	1	60%(R)60%(G)
í í					() (-)
Week of 7/9					
Monday	61	1708	10248	1	90%(R)93%(G)
Wednesday		0	0		

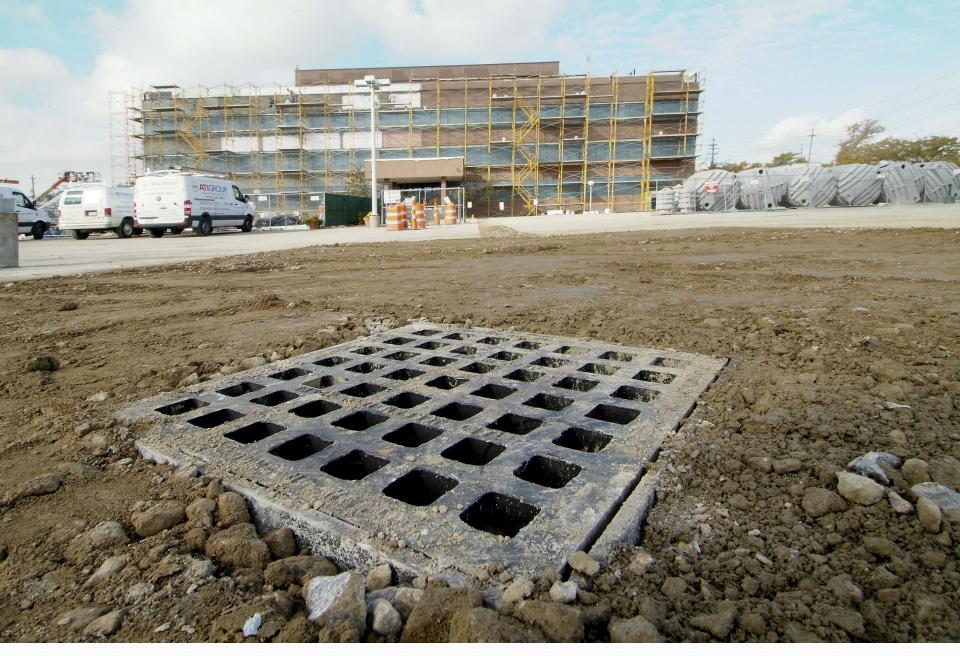


Annual Testing

The water coming into the irrigation system is tested yearly to monitor for petroleum, metals, ph. and other containments. The growing media is also tested on a yearly basis. This test allows the staff horticulturist to monitor air porosity, nutrients levels, ph., metals, contaminants and other valuable information leading to prescriptive and corrective maintenance protocols.

PENNS	STATE				(814) 86	3-0841 I	Az (814) 863	4540		
					The Pen Univers	ural Analytical S neylvania State J ily Farl- PA 1680 asl.psu.edu	nversity	aory		
ANALYSIS FOR:					ADDITIONAL COPY TO:					
Jason Barrett				M.A. Uhlmann						
TREMCO In 273 Elmwoo Schnunburg	Tremco Inc. 44 Emerson Hill Sq. Marietta GA 30060									
LABID	SAMPLE ID	SAMPLET	TYPE	DATE S	AMPLED	DATE RECEIVED	DATE COMPLETE			
SM04555		Single-layer	extensive			9/28/12	9/28/12 10/10/2013			
			Roof Medi							
Analysis			Units	ess specified otherwise s Result			FLL Guidelines for Single Course Extensive Site			
Particle Size Dist	ribution (See accompanying	report)								
≤ 0.05 mm (Fill reference value based on < 0.06 mm) Denisty Measurements			mass %		3.8		≤10			
Bulk Density (dry weight basis)			g/cm ³		0.92		-			
Bulk Density (dry weight basis)			Ib/ft ²		57.68					
Bulk Density (at max. water-holding capacity)			g/cm ³		1.37					
Bulk Density (at max. water-holding capacity)			Ib/ft3		85.23					
Water/Air Measu	rements									
Moisture			mass %		12.9		—			
Total Pore Volume ²			Vol. %		56.0		_			
Maximum water-holding Capacity			Vol. %		45.6		20 - 65			
Air-Filled Porosity (at max water-holding capacity)			Vol. %		10.4		≥ 10			
Water permeability (saturated hydraulic conductivity)			cm/s		0.01	0	0.1 - 0.67			
Water permeability (saturated hydraulic conductivity)			in/min		0.32	2.	2.36 - 15.8			
pH and Salt Cont	ent									
pH (CaCl ₂)					6.6		5.0 - 8.5			
Soluble salts (water, 1:10, m:v)		mmhos/cm		0.02		-			
Soluble salts (water, 1:10, m:v)			g (KCI)/L		0.12		≤3.5			
Organic Measure	ments									
Organic matter content			mass %		3.0		-			
Organic matter content			g/L		27.8	<u>≤</u> 40		(2014) Shark Course Extensive		
Nutrients	A CALL				77.8			Count		
Phosphorus, P ₂ 0, (CAL)			mg/L				≤200			
Potassium, K ₂ O (CAL) Magnesium, Mg (CeCl2)			mg/L		61.1	<u>≤</u> 700		0.7		
			mg/l		56.2		≤200	102		
Nitrate + Ammonium (CaCl2)			mg/I		13.5		<u><</u> 80	~		

¹Forschungsgesellschaft Landschaftsenttwicklung Landschaftsbau (FLL). 2008. Guidelines for the Planning Execution and Upkeep of Green-Roof States ²Total pore volume determined using measured particle density instead of assumed particle density as specified in FLL.



Original outlet pipe for stormwater cut to receive vault and fittings.

MOMATSU

Completed installation of vault with 6 cisterns waiting for installation.

The Idea of Saving Water

The daily effort to manage water from a limited resource has made a change in attitudes regarding water. No other effort could have affected such a change in habits.

The Team

J. William Jensen, PE, Consultant

